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Overview:

1 Sample of my work: Computational
Complexity and Phase Transitions

2 Proposed work with PARC: structural
parameters for “small-world networks”
— Definitions and discussions.
— Preliminary result: routing in small-world

networks

3 Possible sources for structural parameters
— geometric embeddings of graphs
— tree-like decompositions



pr—
—
L

e et

Can you predict whether a class of instances
of a combinatorial problem is “easy/hard” ?

Computational Complexity: P/NP-complete.
Criticism: Pessimistic, worst-case theory.

Can one say something better than *“hard in
the worst case” 7

Example: 3-SAT:
Clause: 1 VT3V X7.
Formula: Conjunction of clauses.

To decide: Is the formula satisfiable 7
NP-complete, hence “hard’ in the worst case.

Random model: ¢ = #clauses/#variables.
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Survey up to 1996: Huberman, Hogg and
Williams, “Artificial Intelligence” vol. 81

Cheeseman, Kanefsky and Taylor:

"The results reported above suggest the fol-
lowing conjecture: All NP-complete problems
have at least one order parameter and the hard
to solve problems are around a critical value
[..]. This critical value (a phase transition)
[...] The converse conjecture is P problems do
not contain a phase transition”.

“fashionable nonsense’ .

Imprecise. What is an “order parameter’” 7
“Canonical” property: monotonicity. With
this interpretation: false (Erd&s and Rényi).

Reason: Phase transitions are insensitive to
changes on a set of instances “of measure
zero” . Worst-case complexity is not.
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Any connection between computational
complexity and phase transitions 7 Reason:
problems constructed in the above statement
are “artificial’. Maybe the situation is better
for “natural” problems.

Similar: Computational Complexity: satisfia-
bility problems are either in P or NP-complete
(Schaefer,1978). Additional reason: all
tractable cases from Schaefer’'s theorem have
phase transitions that can be rigorously deter-
mined.

My work: classification of thresholds for the
(clausal) subset of Schaefer’'s framework.
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Clause template:
Cop:T1V...TaVTay1 V...V Zeqyp.
Examples:

Ca,ozx_l\/...x_a, CO,b:xl\/'“\/xb
S: finite set of clause templates.
SAT(S): allow clauses whose templates are in
S.

Random model: m clauses, chosen uniformly
at random, with repetition among those
available.

Result: classification of satisfiability problems
with a sharp/coarse threshold. Exact
statement in the paper (15th I.E.E.E.
Conference on Computational Complexity).
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Interpretation:

If SAT(S) has a coarse threshold then the fol-
lowing “trivial’ procedure works with proba-
bility 1 — o(1) everywhere outside the “critical
region” . Even in the critical region its success
probability is (at least some) constant !

if O™ or 1" satisfy &
then P is satisfiable
else

declare & unsatisfiable.

Contrast: (new result) if SAT(S) has a sharp
threshold then All Davis-Putnam algorithms
provably need exponential time on the average
at the critical point.
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Conclusion: In the case I study the lack
of a phase transition does have algorithmic
implications !

Caveats:

— the (combined) result is weaker than it might
seem.

— the general case is more subtle

— ... however this is the first rigorous result
that supports the existence of such connec-
tion. A more precise account is an exciting
open question.
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Milgrom (1957): sent letters between people
in Nebraska and Massachusets and computed
average number of hops.

Watts and Strogatz (Nature):power grid of
Western U.S. is “locally dense” but is sparse,
and has small diameter.

Flurry of work on “random graph models of
small-world networks" .

Web is “small-world” (Adamic, however see
also Broder et. al. )

Ingredients: mixture of “ordered” and “ran-
dom” structure.

What is “ordered” 7: not clear. Sometimes
cligue, sometimes lattice.
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Kleinberg (Nature, 2000): random graph mod-
els do not capture the algorithmic aspect of
efficient online search.

Model: 2-d lattice with “long range connec-
tions” .

long-range connections: one (constantly
many).

distribution: power-law, characterized by
exponent r.

P(u=v) ~D(u,v)"".
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“Practical” motivation: routing in (ad-hoc)
communication networks. Routing algorithms
that use geographic information but no rout-
ing tables. GPSR (Hong and Karp, MOBI-
COM 2000), SORSRER (Barrett et al. LANL
2000).

Hot-potato routing: no packet is ever buffered.
Everything is passed along.

Model: at each step, at each node indepen-
dently, a new packet is injected with probability
A/n. Random destination.

Measure average time a packet stays in the
network.
Grid: Broder, Frieze, Upfal (STOC 1996).

Result: r = 2 again O(log?n). Otherwise
nS2(1),
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T hesis: one needs to Ilook for ‘struc-
tural” parameters that explain the algorithmic
(tractability) properties of ‘“small-world net-
works'' .

Analogy: random walk on graphs. Conduc-
tance = rapid mixing.

Second analogy: Quasi-random graphs (Alon,
Erd6s, Spencer 1992) are single graphs whose
properties mirror many of the properties of
random graphs.

Possible directions: geometric embeddings and
tree-like decompositions.



Center for
~ Nonlinear

L uStudies

Geometric embedding: initially see a graph as
a relational structure. It induces a graph dis-
tance dg.

Embedding: mapping ¢ : V(G) — M, (M,d)
metric space such that dg(x,y) < dys(x,y).

Dilation of an embedding:

dyr(z,y)
Cp = Max
T 2k da(z,y)

Lattice graphs: embedded into (RZ2,l7) with
dilation 1. Optimal search (since geometric
and graph distance coincide).



Genterfor

Heuristic: small dilation (4 other structural
properties) = geometric and graph distances
correlate fairly well = efficient search.

Kleinberg's result:

0 < r < 2 “small-world” (small diameter).
Consequently high dilation.

2 <r < oo "the lattice takes over”. Efficient
(in the shortest path length) online search.

Conclusion: r = 2 is a phase transition in dila-
tion.

General embedded graphs that support effi-
cient search ?Some results, not yet satisfactory
form.
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Tree-decompositions:

Motivation: many hard problems are easy for
trees. Tree-like decompositions: A.I. and Pa-
rameterized Complexity.

Treewidth k:
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Implicit constraints imply that “natural”
graphs have small treewidth.

— Control-flow graphs arising from structured

programming languages have treewidth < 10
(Thorup).

— Dependency graphs arising from N.L.P. have
bounded treewidth under a plausible cognitive

model of language understanding (Kérnai and
Tuza, 1992).
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Why treewidth might be relevant to social net-
works 7

Model of citation: simple approximation. The
references of a new paper are all “related”.

Semantic graph: metric embedding. All cited
papers are ‘“close” (clique).

Useful approximation: there is an upper bound
on the number of references in a single paper.

Conclusion: the (semantic version of the) ci-
tation graph has bounded treewidth !
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Other possible work: graph topology and the
dynamics of multi-agent systems.

Related work: Peyton-Young (1999), Axtell
(2000).

Pavlov rule for Iterated Prisoner’'s Dilemma:
— Graph G, labels from =+1.

— choice: random pair.

— x; and z; replaced by z;x;.

— cooperation: unique stable state.

— Emergence of cooperation

— O(nlogn) steps on cycles, exponential on
complete graph (Dyer, Goldberg, Greenhill, Is-
trate, Jerrum 2000).
— polynomial on lattices.

What about small-world networks 72 More im-
portantly, why 7



